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Abstract. We study the behavior under perturbations of the Parallel Bak-Sneppen model (PBS) in 1 + 1
dimension, which has been shown to belong to the universality class of Directed Percolation (DP) in
1 + 1 dimensions [1]. We focus our attention on the damage-spreading features of the PBS model with
both random and deterministic updating, which are studied and compared to the known results for the
extremal Bak-Sneppen model (BS) and for DP. For both random and deterministic updating, we observe a
power law growth of the Hamming distance. In addition, we compute analytically the asymptotic plateau
reached by the distance after the growing phase.

PACS. 05.20.-y Statistical mechanics – 05.45.+b Theory and models of chaotic systems –
05.70.Ln Nonequilibrium thermodynamics, irreversible processes

A great deal of evidence has been put forward in recent
years for the appearance of power law statistics in nature:
a wide variety of phenomena, from earthquakes [2,3] to
biological evolution [4], from surface growth [5] to fluid
displacement in porous media [6], exhibit scale invariance
in both space and time. To explain these all-pervading
power-law tails, Bak, Tang, and Wiesenfeld introduced the
concept of self-organized criticality (SOC) [7]. In a nut-
shell, SOC means that certain driven spatially extended
systems evolve spontaneously towards a critical globally
stationary dynamical state with no characteristic time or
length scales [8]. This scale invariance implies that the
correlation length in these systems is infinite and conse-
quently a small (local) perturbation can produce a global
(maybe even drastic) effect. This possibility leads natu-
rally to the study of the sensitivity to perturbations in
(self-organized) critical systems.

To study the propagation of local perturbations (dam-
age spreading) one can borrow a technique from dynamical
systems theory. Let us consider, for instance, two copies
of the same dynamical system, with slightly different ini-
tial conditions. By following the dynamics of both copies
and studying the evolution in time of the “distance” d(t)
between them, it is possible to quantify the effect of the
initial perturbation. Indeed, assuming that the distance
d(t) grows exponentially, and defining the Lyapunov ex-
ponent λ via

d(t) = d0 exp(λ t), (1)
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three different behaviors can be distinguished, correspond-
ing to λ being either positive, negative or zero. The case
λ > 0 corresponds to the so-called chaotic systems, where
the extremely high sensibility to initial conditions leads
to exponentially diverging trajectories developing on a
chaotic or strange attractor. The case λ < 0, instead,
characterizes those systems in which the dynamics has a
simple attractor such as a fixed point or a limit cycle and
any initial perturbation is “washed out” with exponential
rapidity.

The boundary case, λ = 0, admits, in turn, a whole
class of functions d(t), namely

d(t) ∼ tα . (2)

where α is some exponent, characteristic of the system. In
particular, α > 0 corresponds to weak sensitivity to initial
conditions while α < 0 corresponds to weak insensitivity
to initial conditions (as an example, the reader is referred
to Ref. [9], where this analysis is performed for the logistic
map at its critical point [10]).

When performed on the BS model [4], this analysis
shows that the critical properties of the model allow us to
describe its behavior under perturbations via equation (2),
with an exponent α = 0.32 [12,13]. Recently [15], the re-
sults presented in [12] were explained by relating the BS
model to a simpler toy model. In this paper we analyze
the behavior under perturbations of the PBS model, intro-
duced not long ago by Sornette and Dornic [1]. We study
two versions of it, namely the one with random updat-
ing and the one with logistic updating, and discuss of the
differences and similarities between the BS and the PBS
models, from the point of view of damage spreading.
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Originally proposed to describe ecological evolution,
the BS model describes an ecosystem as a collection of
N species on a one dimensional lattice. To each species
corresponds a fitness described by a number f between
0 and 1. The initial state of the system is defined by as-
signing to each site j a random fitness f0

j chosen from a
uniform distribution. The dynamics proceeds sequentially
by mutating at each time-step the less fit species together
with its two nearest neighbours. In the parallel version
of the BS model, the dynamics proceeds with a parallel
updating, according to the following rules [1,16].

1. Find the site with the absolute minimum fitness fmin
on the lattice (the active site) and its two nearest
neighbours.

2. Update the values of their fitness by assigning to them
new random numbers from a uniform distribution.

3. Search for all sites on the lattice with fitness f < fmin
and update them together with their nearest neigh-
bours. Repeat the search until there are no sites left
with f < fmin.

4. Return to step 1.

The difference between the PBS model and the origi-
nal BS model is in step 3. In the extremal version, once
the minimum and its nearest neighbours are updated one
looks for the new minimum, and consequently the number
of updated sites per time step, Ut, is constant (Ut ≡ 3).
In the parallel version, instead, this number will follow a
complex temporal evolution during an avalanche, and in
general (Ut ≥ 3). In fact, the distribution of the number
of updated sites per time step inside an avalanche shows
a nearly flat distribution, with a upper cutoff at a value
which is comparable with the system size [14]. Due to this
saturation, one observes that the distance D(t) (see below
for a definition) grows in time much faster than in the
BS case and that finite size effects are also much stronger.
Furthermore, the PBS can be exactly mapped onto the Di-
rected Percolation (DP) problem [1], where the avalanche
time distribution in the PBS model is equivalent to the
cluster distribution in DP and the threshold for PBS is
equivalent to the critical probability in DP.

In both versions of the BS model, after an initial tran-
sient that will be of no interest to us here, a non-trivial
critical state is reached. This critical state, characterized
by its statistical properties, can be understood as the fluc-
tuating balance between two competing “forces”. Indeed,
while the random assignation of the values, together with
the coupling, acts as an entropic disorder, the mutation of
all those f < fmin acts as an ordering force. As a result
of this competition, at the stationary state the majority of
the fj have values above a certain threshold fc. Only a few
will be below fc, namely those belonging to the running
avalanche (see [4,17,18,21] for a detailed discussion). The
value of fc represents the “equilibrium” between order and
disorder. To change this critical value one should consider
a mechanism that acts in one of the two competing factors.
The introduction of time correlations in the values of con-
secutive fj for instance, produces an increasing in fc, while
an increase in the number of nearest neighbours decreases
fc [18]. In the original version of the BS model, with

Table 1. Values of the exponent α for different sizes and up-
dating rules.

N 100 250 500 750 2000
α ran. up. 0.44(1) 0.47(1) 0.48(1) 0.48(1) 0.47(1)
α log. up. 0.43(1) 0.46(1) 0.47(1) 0.47(1) 0.47(1)

random uncorrelated updating and three nearest neigh-
bours, fc ≈ 0.6607. Since the disorder is stronger in the
parallel version (Ut ≥ 3), one expects the equilibrium
point to be displaced towards the completely disordered
value. In fact, for the parallel BS model, fc ≈ 0.5371(1)
[1]. This results can be obtained both numerically and
analytically by mapping the model onto directed percola-
tion.

As mentioned above, to study the behavior under per-
turbations we produce two identical copies B1 and B2 of
the system of size N in the critical state, and find the
minimum (the active site). Then, we introduce a slight
perturbation in B2 (as explained later on) and follow the
evolution in time of the Hamming distance (to distinguish
between extended systems and maps we will hereafter use
the capital D for the distance)

D(t) =
1

N

N∑
j=1

|f1
j − f

2
j | . (3)

Since this quantity has strong fluctuations, we con-
sider the average 〈D(t)〉 over different realizations of
the initial values of the fj . In particular all the simu-
lations presented here are the result of averaging over
5 × 102 realizations. The simulations for the Hamming
distance (3) are performed with both random and de-
terministic (logistic) updating rules, with system sizes
N = 100, 250, 500, 750, 2000. Let us begin by discussing
the results obtained for random updating. As explained in
[15], D(t) may depend on the internal correlation of the
system and on the correlations between the two copies.
In the 1D BS model, due to the choice of unit of time,
which allows only a number O(1) of sites to be updated,
the growth rate must give an exponent α<1 and stop at a
certain time τ ∼ Nz, at which a crossover to a saturation
regime appears. Clearly, this is due to the fact that after
τ time-steps each site of the lattice has been covered at
least once. For t� τ , almost all the lattice sites have been
covered and the two strings are made of the same random
numbers placed in different position along the lattice (see
[15] for a detailed discussion).

In the PBS case, D(t) reaches, after an initial power
law growth (as in the BS case), a well-defined plateau (see
Fig. 1). However, due to the faster parallel dynamics, the
value of the exponent α is expected to be larger than the
one for the the extremal non-parallel case. The values α
measured for different system sizes are shown in Table 1.
As expected, these values are larger than in the original BS
model. Moreover, there seem not to be dependence of the
exponent α on the system size N . Notice that our expo-
nent differs from the one obtained in [20] for the Domany-
Kinzel model in the context of DP, onto which the PBS
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Fig. 1. log10-log10 plot of the distance D(t) in the PBS model,
versus the time t, for random updating. Inset: logarithmic ex-
trapolation of the plateau as a function of N , for both random
and logistic updating rules. The infinite size value Dasym ob-
tained is in agreement with our analytical estimate.

can be mapped. This discrepancy is due to the choice of
timescale for the measure of the distance. Indeed, in the
Domany-Kinzel model case only one active (occupied) site
per time step can be updated, together with its neighbour,
thus resulting in a dilated time scale with respect to the
study presented here. Thus, in order to compare the two
models one has to establish the relationship between the
two timescales. This is not easy to realize for the Ham-
ming distance. In fact, according to this interpretation,
equal times for the two copies on the Monte-Carlo parallel
timescale are not equal times on the DP-like timescale. To
circumvent this problem, we realized a set of PBS simula-
tions (with system size N = 2000) for a single copy, com-
puting at every Monte-Carlo (parallel) time step δt = 1
the number nact(t) of sites below threshold (which is itself
time-dependent). This defines the temporal increment for
the DP-like time scale δtDP = δt nact(t) = nact(t). The
effective DP time at the MC step t is thus connected to
the effective time at MC step t− 1 by the relation:

tDP (t) = tDP (t− 1) + nact(t). (4)

Then, we mediated over different realizations of the dy-
namics, obtaining the scaling of the effective DP time with
the MC time of the simulation. The result, shown in Fig-
ure 2, is that tDP ∼ tζ with ζ = 1.41(2). From this, if
we assume that tDP is the equivalent of the DP timescale
for PBS, we can combine the scaling law for D(t) and
that for tDP to get the effective scaling exponent α∗ for
the Hamming distance with respect to the DP time-scale
tDP :

α∗ =
α

ζ
=

0.47

1.41
= 0.33(1). (5)

This value is quite near to the DP exponent αDP =
0.314(1) [20].

At any given time step t during an avalanche, the av-
erage growth of D(t) is connected to the mean number of
sites σ(t) covered by the activity in each system [15]. In
Figure 3, σ(t) exhibits a power law behavior, σ(t) ∼ tµ.
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Fig. 2. Scaling of the effective DP-like time tDP with the
Monte-Carlo time t, on a log10-log10 scale. We get a power law
behavior with exponent ζ = 1.41(2).
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Fig. 3. log10-log10 plot of the number σ(t) of sites covered
during the evolution of a single copy of the system, versus the
time t, for random updating rule.

The values of the scaling exponent µ at different sizes N
(see Fig. 3) are always bigger than the corresponding val-
ues of the exponents for the Hamming distance. This is
expected since the correlations between the two copies in
D(t), if present, can only decrease the value of α with
respect to µ [15]. In the parallel model there are strong
correlations between the two copies, due to the high num-
ber of updated sites at each time step.

The asymptotic value of the Hamming distance shows
quite a strong and persistent dependence on the system
size N and converges to an asymptotic value only loga-
rithmically in N (see inset of Fig. 1). Then, in order to
get the real value of the plateau, one has to go to the
thermodynamic limit N = ∞, once the plateau has been
reached. This is realized by a logarithmic extrapolation of
the data for the different sizes. The value of this plateau
can be obtained in terms of the asymptotic stationary fit-
ness distribution ρ(f) namely [15,19]

Dasym(N) = 〈D(t→∞, N)〉

=

∫ 1

0

df1df2ρ1(f1)ρ2(f2)|f1 − f2|, (6)
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where ρi(f) is the normalized distribution function (at
t = ∞) for the variables f i ∈ Bi [22], at a given system
size N . The dependence of the plateau Dasym(N) on N
must then be related to the shape of the stationary fit-
ness distribution. The fitness distribution has, in fact, a
flat tail below the threshold fc, which disappears only log-
arithmically in N as the system size is increased. In the
limit N →∞ the distribution ρi(f) is given by

η(f) =
1

1− fc
Θ(f − fc), (7)

with fc = 0.5371. By substituting equation (7) in equa-
tion (6) we get Dasym(N =∞) = Dasym = 0.1543 as esti-
mation of the plateau in the thermodynamic limit. Turn-
ing back our attention to Figure 1, one can see that this
result is consistent with the extrapolated numerical value
Dasym ∼ 0.14(2).

We have also performed a similar analysis for the PBS
model with a deterministic updating, in which the new
fitnesses are obtained by iterating the logistic map, namely

fi(t+ 1) = bfi(t)(1− fi(t)), (8)

where fi(t) is the fitness of site i at time t, and b is a
parameter set to the value 4 [17,18]. We observe the same
qualitative behavior for all the quantities studied in the
random updating case. The fitness distribution is however
different since it is influenced by the invariant measure of
the map, as pointed out in [17,18]. In the present case,
the fitness distribution is strongly picked around f = 0
and around f = 1, for finite sizes N . The distribution is
of course not symmetric and in the large N limit, all the
fj are above a threshold fc = 0.55(1) [23]. The value of
the plateau Dasym converges, in the limit N → ∞, to
Dasym ∼ 0.15(2). By inserting the fitness distributions
thus obtained in equation (6), we obtain an analytic es-
timation, Dasym = 0.1556, that is indeed very close to
the random updating analytical value, and in agreement
with our numerical results. This is reasonable, since the
threshold of the parallel BS with deterministic rule is very
near the threshold of the random updating case. Although
we performed, for the computation of the plateau, simu-
lations up to system size N = 8000, the need of a loga-
rithmic extrapolation towards N = ∞ prevents us from
obtaining a precise numerical estimation of the plateau.
The values of the exponents α and µ show no substantial
differences with respect to the random updating case, as
is the case for the extremal BS model [19], thus confirm-
ing the robustness of α with respect to different updating
rules. A more detailed analysis of both parallel and ex-
tremal BS models with different updating rules and dif-
ferent implementations of the initial perturbation will be
reported elsewhere [14].

Summarizing, we have studied the features of dam-
age spreading in the parallel version of the Bak-Sneppen
model (PBS), with respect to its extremal version. In gen-
eral, the damage spreading in the PBS model exhibits
a faster dynamical evolution towards a stationary state.
The estimation we get for the damage spreading expo-
nent α in PBS is bigger that that of directed percolation.

We propose that the origin of this discrepancy stems in the
different choice of timescale for the two models. Indeed,
after a suitable rescaling of the microscopical timescale in
the PBS model, we get an exponent very close to the DP
one.

We gratefully acknowledge Dr. D. Sornette for drawing our
attention to the study of this problem.
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